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The problem of the stretching of an elastic anisotropic plane with a bounded linear inclusion is solved. The problem is reduced 
to a Riemann boundary-value problem on two sheets of the complex plane glued together along the real axis. Computations are 
carried out for an inclusion situated at an angle to the anisotropy axis. © 2004 Elsevier Ltd. All rights reserved. 

The method of boundary representations [1], developed to solve two-dimensional mixed problems of 
isotropic elasticity for a simply connected body, possesses several distinctive features and advantages. 

1. Any component of the stress tensor (Gn, cy~, "on) and strain tensor (en, % an0, in "normal-tangent" 
coordinates (n, "c), and the derivative with respect to the arc coordinate of the Cartesian components 
of the displacement (u, v) and the boundary of the body are expressed as linear combinations of the 
boundary values of a single set of functions, which are analytic in a disk or a half-plane, and of their 
complements to the entire plane. The same can be said of any linear combination of these objects (the 
unified mode of representation). 

2. A set of boundary conditions on some part of the boundary is associated with a combination of 
boundary values of vectors of analytic functions with rational matrix coefficients. The absolute value 
of the determinant of the a matrix coefficient is identically equal to unity (the admissible class of domains 
comprises domains mapped conformally onto canonical domains by rational functions; uniformity of 
boundary conditions). 

3. The totality of mixed boundary conditions is associated with a Riemann boundary-value problem 
on a circle or a straight line, with discontinuous matrix coefficients. Since the absolute value of the 
determinant of a matrix coefficient equals unity at every point of the boundary, only its argument 
undergoes a discontinuity. This implies that the boundary-value problem is unconditionally solvable 
(the model is mathematically well posed). 

4. The modelling of a physical problem is a process that reduces to constructing a problem of the 
theory of functions from ready-made blocks that correspond to one or another type of boundary 
conditions. In the case of an unbounded body, the coupling condition must be supplemented by 
requirements that produce a specific stressed state in the remote zone (constructivity of the modelling). 

5. In many cases the matrix coefficient can be factorized and a quadrature or explicit solution written 
out. 

6. Thanks to the uniformity of the boundary representation one can consider, instead of a Riemann 
boundary-value problem, a system of singular integral equations for any pair of independent mechanical 
characteristics (flexibility of the apparatus). 

7. In order to construct curves there is no need to reproduce the elastic field. The distribution of a 
mechanical quantity along the boundary may be reproduced directly in terms of the boundary values 
of the analytic functions found, using the formulae of its boundary representation (economy of means). 

The extension of such an efficiency method to anisotropic objects would seem to be a timely topic. 
As is well known [2], for two-dimensional anisotropy there are two possible ways to represent the 

field characteristics in terms of analytic functions. In the case of pairwise equal roots of the characteristic 
equation, the complex representation formulae are identical to the Kolosov-Muskhelishvili formulae, 
and therefore everything that has been done for isotropy is entirely repeatable [3]. In the case of pairwise- 
different roots, Lekhnitskii's complex representation expresses the field characteristics in terms of 
analytic functions of the variables relative to different complex planes, among whose points an affine 

~Prikl. Mat. Mekh. Vol. 68, No. 1, pp. 35-44, 2004. 

29 



30 N.D.  Bertyayeva and V. B. Pen'kov 

correspondence is established. Below, the apparatus of the method of boundary representations will 
be extended to bodies was straight boundaries, that is, half-planes or planes with singularities localized 
along a straight line or a set of segments and rays oriented along one straight line. 

1. B O U N D A R Y  R E P R E S E N T A T I O N  F O R M U L A E  FOR A H A L F - P L A N E  

Suppose the complex half-plane z = x + iy, y > 0, is superposed on the plan of an elastic body. 
Lekhnitskii's complex representation formulae express the components of the stress tensor cy~ +, (y~-, (y+~ 
and strain tensor e+x, Ey, ~y, as well as the derivative of the displacement vector u + ix) with respect t~ 
the x coordinate, in terms of two functions ~ ( z l ) ,  £Y~(z2), each of which is analytic in its variable 
Z 1 ,  Z 2  [21: 

+ 2 + 2 + 
fix = 2Re[gl~l(Zl)  + gZ~-~2(Z2)] 

+ 4- + 
2Re[f~l (zl) %, = + ~ ( z 2 ) ]  

+ + + 

(Yxy = -2Re[l'tlt~l(Zl) + g2~2(z2)] 
+ + + 

e x = 2Re[plf~l(zl) + p2f~2(z2)] 
+ + + 

ey = 2Re[Paf~l(Zl) + p4~"~2(z2) ] (1.1) 
+ + + 

exy = -2Re[psf~l(zl) + P6~z(Z2)]  

v+l~x = + + 2Re[ql~l(Zl)  + q2~2(z2)] + co 

O)xy  = ~(bu+ l b y -  3u+ /bx)  = 

+ + 
= -2Re[(ql  ps)f~l(Zl) + - ( q 2  - P 6 ) ~ ' ) 2 ( Z 2 ) ]  - t.O 

where 0 defines a rigid rotation, COxy is a rotation of an element of the medium, all constants are defined 
in terms of the constants of elasticity of anisotropy a 0 

2 
Pl = a11gl +a~2-a16gl ,  P3 = glql 

2 

P2 = a l l g z + a l z - a 1 6 9 2 ,  P4 = g2q2 

P5 --- g l ( a l l - a l 2 ) ,  P6 = g2(a l l - a l2 )  

ql = a1291+az2/gl-a26, q2 = a1292 + az2192-a26 

The image of the physical plane is a pair of sheets zl = x + ~qy, z 2 = X + gzY bonded along their 
common axis y = 0. Any analytic function whose value on the x axis iff(x) may be continued from this 
axis to each of the four half-planes either as f(zl) or as f(z2). Let D + denote the set of half-planes of 
Zl, z2 fory  > 0 and D- their completion to a two-sheeted surface. 

+ + 
In terms of the functions f~l (z~), f22 (z2) we define two more functions that are analytic in half-planes 

identified by signs (using Muskhelishvili's notation [4]) 

n ~ ( z l )  - +  - +  = f~l(Zl), aa(Zz) = ~2(Zz) (1.2) 

The use of dual identification for these functions (the subscripts 1, 2 are here combined with the plus 
superscript, and 3, 4 are combined with the minus superscript) is superfluous, but it proves to be 
convenient in problems for a plane when, together with the field of the upper half-plane (the plus 
superscript), the field of the lower half-plane (the minus superscript) will also occur. After that, each 
of the functions is analytically continued to the other sheet through the common boundary. For the 
representative point of the two-sheeted surface we introduce the common notation z, setting z = Zl or 
z --- z2 depending on the numbering of the sheets. Accordingly, after the analytic continuations have 
been carried out, each of the functions will depend on a single argument. 

All the fundamental mechanical quantities will be expressed in terms of the boundary values of these 
functions at z = zl = z2 = x. They are listed below in Table 1 (the boundary value of a mechanical quantity 
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Mechanical 
quantities 

+ 

(Yx 

+ (Yy 

+ 

( Y  x y 

+ 
e x = au+/Ox 

+ 

Ey 

28x+y 

av+/ax 

Table 1 

Coefficients of the functions 
(n= 1,2) 

n. + nL2 

2 -2 

1 1 

-It , ,  -~,, 

Pn pn 

Pn+2 pn+2 

Pn+4 pn+4 

qn qn 

in the first column equals a linear combination of the boundary values of the functions in the table header, 
with the specific coefficients indicated. 

We will present a few examples of the construction of the boundary relations for common versions 
of the boundary conditions. 

Surface forces. The normal and shear stresses are defined on the boundary. The rows for the stresses 
p = ~y, "c = Cy~y give coupling conditions of the form 

n; 
n; 

G = 

= G  

~t 1 -- ~I 2 

~3 +g  

ta4 

~ 2- -~ 1  ~ 2 - - ~ 2  , g = l~t2 -122p-17 
~tl ~tlp +% 

(1.3) 

Surface displacements. The displacements are defined on the boundaries. Apart from constants, the 
rows corresponding to these conditions are u' = Ou+/Ox, a)' = Ov+/Ox and the coefficients are 

G = 1 gt lP2-  q2Pl g/2P2- qzP2 

q2Pl - qlP2 qlf i l  - c11pl q l f i 2 -  ?12Pl 

g - q2Pl - q t  u +Plt~' 

Contact with a small  profile. Under a rigid punch, the normal component of the displacement and 
the shear stress are defined (the later is equal to zero). The coefficients are 

qZgl - q lg2  ql~' l  - O lg l  ql~'2 - q2gl  

1-ql~t 2 - q2~ - ~t21)' II 
g = q2~tl ql'c + I.t I o' 
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The assumption that the stresses are finite in the far zone characterizes all the functions as bounded 
at infinity 

f~(Zi )  = F + Az-11 + O(z~ 2) 
~"~;(z2) = r ' +  Bz-21 + O(Z2 2) 

(1.4) 

If the parameters of the homogeneous stressed state and rotation in the remote zone are denoted 
by 6x, ~y, 6~y, c0=, the following relation is observed between them and the values of the functions at 
infinity, F = f~(oo), F' = fl~(oo) as follows from expression (1.1) 

II 
(Y xy 

_20) ~ 

ReFII 
= iImF 

ReF' 

ilmF' 

(1.5) 

where 

H = 

rl = qi + Ps, 

2 -2  2 - 2  2 - 2  2 -2  
~tl + ~tl ~1 -- ~tl ~ 2 + ~ 2  I, t2 -- ~2 

2 0 2 0 

--]..lq --  I~, 1 - -  ].i, 1 + ~ ' 1  --['1"2 - -  l~2  - - ~ 2  + ~ '2  

Rer I i lmr I Rer 2 i lmr 2 

r2 = q2 + P6 

In each specified case, inversion of relations (1.5) enables the values of the functions at infinity to be 
determined. Lekhnitskii [1] formulated a uniquely solvable system of linear equations for the constants 
A and B in expansion (1.4) 

1 1 -1 -1 

~X ~2 --~I " ~ 2  
2 2 -2  - 2  

~1 ~2 --~1 --~2 
-1 -1 

A 

B 

x 

X = X l ( 2 • h ) ,  Y = Y l ( 2 x h )  

i 
( a l6X  + a12Y)la11 

- ( a l 2 X  + aE6~r)]a22 

(1.6) 

X + i Y  is the principal vector of forces applied to a plate of thickness h in the finite part of the plane. 

2. S O L U T I O N  OF THE C O U P L I N G  P R O B L E M  ON 
A T W O - S H E E T E D  S U R F A C E  

Let us consider boundary conditions "of the Nth kind" [1], when the mechanical quantities satisfy an 
appropriate set of different linear relations along the boundary of the body. Under such conditions the 
boundary of the body may be divided into N classes 

OD + = ll t.J l2 k.) . . . IN,  Ik ¢") l j = ~ ,  k ~: j 

The construction of a boundary relation for the analytic vectors 

{n~, cq}, n- {cq, n4} 

reduces to the following boundary-value problem 
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~+ = G f U + g ,  x e 0 D + ;  G = G n, g = gn, x ~ l  n (2.1) 

The matrix coefficient G is piecewise-constant. Defining I2- = fi+ "by symmetry," we obtain the following 
two relations after changing to the conjugate in (2.1) 

GCr = E, G ~ + g  = 0 

The first of these implies that I det G I = 1. 
It is required to find functions that are analytic on the surface obtained by bonding the two sheets 

along the real axis. These functions must satisfy symmetry condition (1.2) and restriction (1.3). 
The problem may be reduced to an analogous problem on a plane. To that end, it suffices to ignore 

one of the sheets. Indeed, solution of the "truncated" problem for each of the sheets independently, 
with the solutions subsequently bonded, guarantees satisfaction of all the boundary conditions and the 
conditions at infinity. The symmetry of the functions, which holds within each single sheet, will be 
maintained after they have been bonded as well, since the index of the variable z "attaching" it to the 
sheet is "forgotten." 

The main difficulty in solving the "truncated" problem is to factorize the matrix coefficient, that is, 
to represent it in the form 

G = X+(x)[X-(x)]  q ,  x e  OD + 

where the function matrices (canonical solutions) participating in the product are the boundary values 
of matrices that are analytic in the sign-identified half-spaces and admit of a definite order at infinity 
[5]. The first factorization of the piecewise-constant matrix coefficient was achieved by Plemelj [6]. 

The general solution of the Riemann matrix boundary-value problem in the plane has the form 

+ I1X+(t) I, D+ 
f~±(Z) = X (Z) ~ i  I ~ - z  dt + P ( z )  Z 

~D + 

(2.2) 

where P(z) is a vector of polynomials with undetermined coefficients, guaranteeing the required 
behaviour of the unknown functions at infinity. The values of its coefficients are established by picking 
out a particular solution that guarantees not only the given stress level in the remote zone and the 
stipulated symmetry of the functions, but also special features due to the formulation of the problem 
(for example, the constants "lost" when the displacement is differentiated with respect to the boundary 
parameter must be reconstructed). 

Remark.  In cases in which the matrix coefficient of problem (2.1) has a diagonal structure, the 
boundary-value problem is reduced, and instead of a vector of functions it proves sufficient to consider 
a scalar function. The other functions are either defined by symmetry or are not needed. 

3. B O U N D A R Y  R E P R E S E N T A T I O N  F O R M U L A E  FOR 
C O U P L E D  H A L F - P L A N E S  

Two anisotropic half-planes are coupled along a straight line, which is identified with the real axis of 
the complex plane. The state of the upper half-plane will be described using the functions, ~-~(q), ~ (z2)  
of formulae (1.1), in which the constants of elasticity are labelled with a plus superscript, and the state 
of the lower plane will be described using functions g~l(Zl), ~2(z2) of the analogous formulae, taking 
a minus superscript for the constants of elasticity. For each of these functions, a symmetric function is 
defined in the coupled half-plane by formulae of the form (1.2). Thus we have defined two analytic 
vectors on both sheets of a two-sheeted surface, glued together along their common x axis, with the 
same complex variable 

± + + 

fY(z) = {ta,(z), n~(z), ta3(z), fh(z)} 

In terms of the boundary values of this vector one can express not only the mechanical quantities listed 
in Table 1 but also the analogous quantities as viewed from the lower half-plane and their jumps of the 
form [a] = a + - a-. These jumps are listed in Table 2. 
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Table 2 

Discontinuities 
of the mechanical 

quantities 

[c;A 

[,~y~ 

[%] 

[eA =~[u]/bx 

21%1 

O[vl/~x 

Coefficients of the functions 
(n = 1, 2) 

a~ a ± 
n+2 

±2 -:~2 
Ix. q:Ix. 

_+1 :F1 
+ + - : ~  

:I:Ix. -B .  

+ + -:1: 
-Pn Tpn 

+ + - ~  
-Pn+2 T-pn+2 

+ ± -~: 
--Pn+4 T p n + 4  

+q~ :r-qn 

The procedure by which the boundary relations for the analytic functions are constructed does not 
differ in principle from that described previously. We will present a few examples of typical relations 
at the places where the half-planes are coupled together, assuming that the latter are of a homogenous 
material :(and therefore the plus and minus superscripts are omitted). 

The condition of  continuity of  the field. In the case when the stresses and strains undergo no dis- 
continuities along the line of coupling, the coefficients of the boundary-value problem take the simplest 
possible values. 

G = E, g = 0 (3.1) 

A rigid linear inclusion. A homogeneous inclusion moves like an absolutely rigid body, so that displace- 
ments are defined on it as viewed from each of the half-planes (apart from three real constants). To 
determine the coefficients of the coupling condition, one can retain the expressions for the displacement 
components from Table 1 and their discontinuities from Table 2. We obtain the expressions 

0 0 
0 0 

G =  

-y/8 a/8 

= qzPl -q lP2 ,  

= q 2 P 2 "  ~/2P2' 

: l  0 
Tiff ~/8 1 

, g =  o3 0 
0 0 0 

0 0 1 

= q2/51- gllP2 

T = / / IPl-  ql/~l 

(3.2) 

in which co o is the angle of rotation. 

A cut. Along a cut whose sides do not interact, the normal and shear stresses vanish. Retaining the 
corresponding rows in Table 1 (twice, since for the body occupying the lower half-plane one has the 
same representations but with a minus superscript) gives 

G = 
0 0 1 0  i 
0 0 0 1  , g = 0 

1 0 0 0  
0 1 0 0  

(3.3) 
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Fig. 1 

When boundary conditions are formulated for four-dimensional vectors, cases may also arise in which 
reduction is admissible. Such cases are due to singularities of the structure in the common piecewise 
matrix coefficient, namely, the existence of diagonal blocks in the matrix. 

4. U N I A X 1 A L  S T R E T C H I N G  OF A P L A N E  C O N T A I N I N G  
AN I N C L U S I O N  

Suppose an inclusion is oriented arbitrarily with respect to the anisotropy axes, at an angle ~. 
Place the origin at its midpoint and assume that the x axis points along it. We shall assume that the 
inclusion occupies a closed interval [-a, a] (Fig. 1). The following boundary conditions hold along 
the axis 

+ + 
1) = f.O0X, E x = O, X E  11 

[(Yy] = 0 ,  [(Yxy] = 0 ,  [/./] = 0 ,  

x ~ l 2 = (-oo, -a )  t j  (a, oo) 

[v ]  = 0 (4.1) 

6% corresponds to rigid rotation of the inclusion. 
After application of the boundary representation formulae (Tables i and 2), one proceeds from (2.1) 

to a Riemann boundary-value problem on the common segment of a two-sheeted surface in the class 
of functions bounded at infinity 

g2 + = G ~ - + ~ 0 g ,  x e  I 1 (4.2) 

The coefficients G and g are defined as in formulae (3.2). 
Since the coefficient matrix in problem (4.2) is constant along an open contour, it may be factorized 

by first representing it in Jordan normal form and then changing to set of one-dimensional problems 
on the open contour [1]. The matrix G admits of a factorization 

G = R A P  -1, A = d iag{1 ,1 , -1 , -1}  

The constant elements of the matrix R = [Rij] are uniquely defined. 
• + - - 1  + ° The change of variables W-(z) = R f2-(z), where the argument belongs to either sheet, leads to the 

matrix form of a set of one-dimensional Riemann boundary-value problems on the segment 

~F + = AW-, x ~ l  1 (4.3) 

Only the third and fourth rows of (4.3) have the coefficient -1. which is factorized by completing the 
segment to a straight line by a canonical function II(z) = 1/z@-Y~- a z, which has different limits depending 
on whether the line l is approached from above or below; the remaining functions are continuous on 
l. Therefore the canonical matrix of problem (4.2) is defined as 

X+-(z) = Rdiag{1, 1, H(z), lI(z)} 
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The general solution of problem (4.2), guaranteeing that the functions are bounded at infinity, is 

P2 
~+(Z) = X+(Z) P3 + Q3 z 

P4 + Q4 z 

(4.4) 

The fact that the principal vector vanishes and conditions (4.2) at infinity uniquely define all the 
undetermined coefficients of the general solution, thereby singling out a particular solution satisfying 
the mechanical meaning of the problem. In the case that the inclusion does not experience rotation, 
the coefficients are 

el 
P2 

Q3 

Q4 

= g -1 

F , 

F' 

P 

P3 = P4 = 0 

The sequence of formulae (4.4), (1.1) enables the mechanical field to be constructed. Direct applica- 
tion of the boundary representation formulae yields curves of all the mechanical characteristics along 
the real axis without constructing the field. 

Suppose real values are taken for the constants of elasticity of an orthotropic material [2] 

E 1 = 2E 2 = 120MPa, G = 7MPa, v I = 2v 2 = 0.072 

The coefficients expressed in terms of these parameters are 

a u = 1/E 1, a22 = l/E2, a12 = -v I /E  1 = -v2/E 2 

a16 = a26 = 0, a66 = 1/G 

and the roots of the characteristic equation are gl = 4.11i, •2 = 0.343i. The undetermined coefficients 
of the general solution at o~ = 0 were taken to be 

P1 = -0.025, P2 = 0.71, Q3 = "3.934x10-4, 04 = 2.941x10-3, 

P3 = P4 = 0 

Computations were carried out for o~ = 0, 15 °, 30 °, 45 °, 60 °, 75 °, 90 °. Stress curves ~x, % and •xy along 
the x axis, constructed directly by the representation formulae of Table 1, are shown in Figs 2 and 3 for 
the right semi axis as viewed from the upper half-plane. At a = 0 the normal stress ~y is uniformly 
distributed along the x axis, the stress ~x is uniform within the limits of the inclusion (because of the 
constant stress ~y and the absence of deformations in the long fibre), and on the boundary of the inclusion 
it is compressive and unbounded in absolute value. Shear stresses, on the contrary, are not present beyond 
the limits of the inclusion and unbounded near its end. The field characteristics of the stress-strain state 
may be constructed by analysing the analytic functions thus found and using Lekhnitskii's representation 
(1.1). As is obvious from the data presented in Fig. 2, when the anisotropy axes are rotated, the stresses 
stretching fibres contiguous with the inclusion become qualitatively different both within the inclusion 
and outside it. The stresses stretching fibres normal to the inclusion become qualitatively different only 
within the inclusion. The shear stresses become qualitatively different only beyond the limits of the 
inclusion. 
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5. C O N C L U S I O N S  

The method proposed here enables exact solutions to be constructed in many mixed problems for bodies 
with straight boundaries. The solution may also be constructed numerically, using the "basic Riemann 
problem" apparatus [1], which reduces the boundary-value problem to a system of singular integral 
equations. In particular, it seems interesting to consider the following problems: the fundamental solution 
for an anisotropic medium containing a linear rigid inclusion, a system of collinear laminas at the juncture 
of heterogeneous anisotropic half-planes, the contact problem for an anisotropic half-plane, etc. 
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